
ABNORMAL BEHAVIOR
DETECTION IN THE 

ENTERPRISE
A HACKER'S VIEW OF ENTERPRISE SECURITY

BY: DAVE KENNEDY



Most enterprises struggle with the ability to detect attack vectors that are designed to 
evade most enterprise defenses. The shifting tactics of the attackers are troublesome for 
most companies due to the nature of how the attacks work and the inability to change 
dynamically with the attack vectors. Traditional technology such as Anti-Virus, Intrusion 
Prevention Systems, and Firewalls are a base level of security when it comes to defending 
against what most attackers focus on. 

As an attacker myself, I focus my efforts on ensuring 

that when I go after a target, the implants (malware/ 

backdoors) do not get detected by Anti-Virus and other 

technologies. Some companies have invested in Sand 

boxing technologies that focus on the virtualization and 

identification of abnormal patterns. These are highly 

predictable and easy to circumvent. Still to this day, 

most compromises occur from direct executables 

infection. That means that most of the attack vectors 

regardless if it's a Macro-enabled excel document or 

visiting a malicious website attempt code injection in 

order to download an executable in order to 

compromise the system. This is the majority of attacks 

that we see today in the industry. 

Executable infections are problematic because they range from ransomware infections all the 

way to targeted attacks from nation states. With the majority of the "noise" being from 

executables, it's never been more important for us as an industry to understand the best 

approach to protecting against the largest risk factor we have. While our endpoints tend to be 

the infection origination for a breach, the methods for infection need to be understood and 

protected against. The question is, how do you protect yourself against the largest population 

of attacks, and then move onto the more advanced methods for compromise. 

www.BinaryDefense.com



This brings us to the topic of "known good" or what is also known as application whitelisting. Most 

organizations struggle with the ability to baseline their images and ensure a consistent number of 

workstations/endpoints that have the same configuration across the enterprise. The concept of known 

good takes a companies normal operations and documenters deviations in order to understand what 

the enterprise needs to operate. Any deviations are then either prohibited or monitored in order to 

ensure they are not malicious in nature. For those that are not familiar with application whitelisting, it's 

the concept of baselining your organization and then from there only allowing what is normal. Normal is 

defined by the baseline configurations and documented deviations and monitored from there. 

Life cycle of an Attack 

Define Targets 

0 
Test for Detection or 

Probe via Phising 

f- ➔ 

Lateral Movement 

Recon/lntel Gathering Build or Buy Tools 

Deployment Initial Intrusion 

J 
Persistence Hooks 

�

Exfiltrate Information 

www.BinaryDefense.com 

Build an Attack Profile 

ft! 
Command and Control 

' 
Cover Tracks or 

Maintain Foothold 



The concept of known good is nothing new, but if 

your main infection method is through executables 

and you understand what your environment is doing 

-you can literally cut out 90% of your "noise" which

is the main methods for exploitation and then

monitor on deviations to that. This industry is

focused too much on individual attacks and not on

how to reduce the overall noise of an organization

and focus/prioritize on the best methods for

reduction of noise and minimization of risk.

Let's take an example of how to configure known 
good. Let's take a basic example. Most attackers 
(based on Binary Defense research 98.7 percent) do 
not utilize code signing certificates. If you 
implement a program that blocks any executable 
that is not code signed, you can eliminate 98.7 (on 
average) of risk in your environment. 

Example: 

Microsoft deploys a patch. Is code signed by 

Microsoft. Allowed. Malware - not code signed,

is blocked. 

In this simplistic example, if you block anything 
that is not code-signed and allow exceptions 
based on deviations. Known Good becomes a 
much easier process to handle. 

I am personally a huge advocate, but I'm not 
alone. Penetration Testers/Researchers/Red 
Teamers all agree that by baseline your 
configuration you can drastically reduce your 
attack surface. 

There's no question that application whitelisting is 

difficult. It's a GOOD difficult. It means that when 

you baseline your enterprise, you have an 

understanding of what your environment looks like. 

It means that you can now look for deviations of 

patterns and recognition of behavior. Most security 

programs are not anywhere near this level. Once 

you've performed and implemented known good - 

it becomes significantly easier to prohibit directed 

attacks against you. 

*

www.BinaryDefense.com



Let's assume that you have bought into the 
concept of application whitelisting and "Known 
Good" and have it implemented appropriately. 
Now comes the detection and deviation of 
patterns. Attackers are smart. They realize that 
organizations that have implemented Known Good 
will become much more difficult for exploitation. 
They need another way for exploitation. 

There are multiple other ways to gain access to 
a system that does not require exploitation of 
executables. PowerShell is a fantastic example. 
There are patterns within an enterprise that you 
can baseline, similar to known good that can help 
you detect these types of attacks. 

Did you know that there are fourteen 

different variations to EncodedCommand 

which are used for PowerShell detection 

bypasses? 

-e

-ec

-en

-enc

-enco

-encod

-encode

-encoded

-encodedc

-encoded co

-encodeecom

-encodedcomm

-enodedcomman

-encodedcommand

There's great research on PowerShell injection as a 

main method for exploitation by Palo Alto Networks 

on methods for exploitation using PowerShell 

http://researchcenter.paloaltonetworks. 

com/2017/03/unit42-pulling-back-the-curtains-on

encodedcommand-powershell-attacks/ 

www.BinaryDefense.com




	Abnormal_Detection
	EDITED_Abnormal_Detection_Whitepaper

	EDITED_Abnormal_Detection_Whitepaper-3
	Abnormal_Detection
	EDITED_Abnormal_Detection_Whitepaper-6




